18.453 Lecture 3

Lecture plan

1. Min-weight perfect matching
2. Limear/intege program formulation
3. Primal -Dual algorithm.

Springer - mycopy (Forte book) 24 Euros

Minimum Weight (MWPM)
Perfect Matching
Consider bipartite graph with $|A|=|B|=\frac{n}{2}$
ede ii costs $c_{i j} \in \mathbb{R}$.
EGg.

$$
\overbrace{2}^{2}\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]=\left[\begin{array}{ll}
.7 & .2 \\
.1 & .5
\end{array}\right]
$$

Goal: find mathis M in G of least cost Exercise:

$$
c(M):=\sum_{i \in M} c_{i j} \text {. }
$$

MW PM.
by allowing $C_{i j}=\infty$, can assume G is complete bipartite graph.
Application: n machines, n tasks, coots $c_{i j}$ for machine i to do task j.

Today: Hungarian algorithm

- uses linear progranumin
- is strong polynomial time: \# steps independent of sizes of $c_{i j}$; polgrainal in n.

Linear/integer programs

- First, express problem as integes program.
- Associate vector with matching. incidence vector of matching M is vector x st.

$$
x_{i j}= \begin{cases}1 & \text { if } i j \in M \\ 0 & \text { else. }\end{cases}
$$

(confusingly, also a matrix)

$$
\begin{aligned}
& \text { E. } 9 .
\end{aligned}
$$

rote: y permutation matrix.
Integer programs: (IP) min-weight perfect matching has cost
$\left.\min \sum_{i j} c_{i j} x_{i j}\right\}$ objective

$$
\text { constraints } \begin{cases}\sum_{j} x_{i j}=1 & \forall i \in A \\ \sum_{i} x_{i j}=1 & \forall j \in B \\ x_{i j} \geqslant 0 & \forall i \in A, j \in B \\ x_{i j} \in \mathbb{Z} & \forall i \in A, j \in B\end{cases}
$$

\square

Any solution to IP is valid matching \& vice versa.

Linear program. (LP)
Get linear program (P) by dropping integrality constraint.
$\left.\begin{array}{lll}\text { min } & \sum c_{i j} x_{i j} \\ \text { subject to } & \sum_{j} x_{i j}=1 & v i \in A \\ (P) & \sum_{i} x_{i j}=1 & \forall j \in B \\ & x_{i j}>0 & \forall i \in A, j \in B\end{array}\right\}$

Called the linear programming relaxation of the integer program.

Say \times feasible if satisfies constraints.
In contrast to IP: not all feasible x are matchup?
$x_{i j}$ can be fractional.

$$
\begin{aligned}
& x=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{2}{2} & \frac{1}{2} \\
\frac{1}{2}
\end{array}\right]
\end{aligned}
$$

Set of feasible solution stride. is a polytope (bounded polyhedron).

optimum of a linear function
will ocam at an extreme point (corner).
Egg. if $c=a$

minimizes $c \cdot x$ over polytope.

Extreme point x of set Q is point that cant be written as

$$
\lambda y+(1-\lambda) z, \lambda \in(0,1)
$$

for $y, z \in Q-x$

(Mare on this when we get to polyhedral conbinatorics).
In general, extreme points need not be integral Cevenif constraints all have
coefficients in $\{0,1\}$.)
No surprise: L.P. solvable in polynomial time, IP. NP-hard.

Say $Z_{I_{p}}=$ value of some IP
$Z_{L P}=$ value of its relaxation;
In general

$$
z_{I P} \neq z_{L P}
$$

But! IP is more constrained, so

$$
z_{I p} \geqslant z_{L P} .
$$

for minimization problems.

Moreover: if x is optimum for $L P$, and x integral, then x opt for IP!
Exercises: 1. pravethis 5

* 2. find example where $Z_{\text {Ip }} \neq$ Z up 2.

For perfect matching, we are lucky! Constraints special.

Consider the poly tope P
cut out by constraints of (P).

$$
P=\begin{array}{ll}
\left\{\begin{array}{l}
x \\
\text { st. } \\
\\
\\
\\
\\
\\
\\
\sum_{i} x_{i j} x_{i j}=1 \quad \forall i \in A \\
\\
\\
\end{array} x_{i j} \geq 0 \quad \forall j \in B\right. \\
\end{array}
$$

Theorem: every extreme point of p is integral.

Sin particalon, is a $0-1$ vectorand hence is the incidence matrix of P.M.).
We give 2 proofs:
3. algorithmic (today)
2. algebraic (later); uses total unimodularity

First: duality for $L P ' s$.
(informal version).
obstruction: Values

$$
\begin{array}{ll}
& u_{i} \quad i \in A, \\
& v_{j} j \in B \\
\text { st. } & u_{i}+v_{j} \leq C_{i j} \forall i \in A, \\
\forall j \in B .
\end{array}
$$

Then: for any matching M,

$$
\underbrace{\sum_{i j \in M} c_{i j}}_{z_{t p}} \geqslant(D) \quad \sum_{i \in M} u_{i}+v_{j}=\underbrace{\sum_{i \in u_{i}} u_{i}+\sum_{j \in B} v_{j}}_{\substack{\text { this value } \\ \text { if auction } \\ \text { obstruction. }}}
$$

want to maximize this value; doing this gives us the dual (D) of (P).
$\max \sum_{i \in A} u_{i}+\sum_{j \in B} v_{j}$
(D)

$$
\begin{aligned}
u_{i}+v_{j} \leq C_{i j} & \forall i \in A \\
& \forall j \in B
\end{aligned}
$$

In fact, $\sum_{i \in A} u_{i}+\sum_{j \in B} v_{j}$ is not just a lower Laud on $\begin{array}{rr}\text { not just a owen } \\ c(M) \text {, but on }(P) . & \left(z_{I p} \geqslant z_{L p}\right. \\ \geqslant(D))\end{array}$

Indeed, we can calculate:

$$
\begin{aligned}
& \sum_{i j} c_{i j} x_{i j} \geqslant \sum_{i j}\left(u_{i}+v_{j}\right) x_{i j}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i \in A} \sum_{j \in B} u_{i} x_{i j}+\sum_{i j} v_{j} x_{i j} \\
& =\sum_{i \in A} u_{i}\left(\sum_{j \in B} x_{i j}\right) \\
& +\sum_{j \in B} v_{j}\left(\sum_{i \in A} X_{i j}\right) \\
& \text { (constraint) } \Rightarrow=\sum_{i \in A} u_{i}+\sum_{j \in B} V_{j} \text {. }
\end{aligned}
$$

Construction (P) $M(D)$ is example of more
general 'recipe for taking dual of $L P^{\prime} s$.

Summary:

(D) Recall: used

When equality?? $\sum_{i=1} c_{i j} \geqslant \sum_{i \in M} u_{i}+v_{j}$ ii GM $\quad i \in M$
M must only have edges (i, j) s.t.

$$
c_{i j}=u_{i}+v_{j}
$$

"complementary slackness" in LP lingo.

- Let $\omega_{i j}=c_{i j}-u_{i}-v_{j}$.
- Are matching on $\left\{(i, j): w_{i j}=0\right\}$, but no guarantee they are perfect.
- frimal-dual alg uses such (non-perfect matchings) to update dual solution u_{i}, v_{j}.
Primal -Dual
Outline:

1. start $\omega /$ any dual $\operatorname{nneed}_{\left.u_{i}+v_{j} \leq c_{i j}\right)}$ feasible solution $\left.u_{i}+v_{j} \leq c_{i j}\right) \quad n_{i}=0, v_{j}=\min _{i} c_{i j}$
Repeat the following until dove:
2. In anyiteration, alloy. has dual feas. Sols. (u, v, w)

$$
c_{w i j}^{w}=c_{i j}-u_{i}-v_{j}
$$

3. Want a matding on

$$
E=\left\{(i, j): w_{i j}=0\right\}
$$

Use cardinality matching alg. to output largest matting M

- If M perfect, is optimal by complementary slackers.
- If not, use the vertex cover out put my alg. to find new dual feasible sole w/ langer value.

Details of step 3:

- Suppose M not perfect.
- Recall set L output br the aug. paths algorithm.
c^{*}

$$
c^{*}=(A-L) \cup(B \cap L)^{L} \text { is optimal }
$$

vertex cover. of E.

In particulon: noedges of E.
C^{*}

Equivalently: $w_{i j}>0$ for

$$
i \in A \cap L, j \in B-L
$$

A

$$
E=\{(i, j):
$$

$$
\left.w_{i j}=0\right\} .
$$

$\omega_{i j}=\left(i j-u_{i}-w_{j} \geq 0\right.$.
B

Updating u,v: set

$$
\delta=\min _{\substack{i \in(A \cap L) \\ j \in(B-L) ;}} \omega_{i j} \mid(\delta>0)
$$

formally:

$$
u_{i}= \begin{cases}u_{i} & i \in A-L \\ u_{i}+\delta & i \in A \cap L\end{cases}
$$

$$
v_{j}= \begin{cases}v_{j} & i \in B-L \\ v_{j}-\delta & j \in B \cap L\end{cases}
$$

New solution is feasible!
New value? $\sum_{i \in A} u_{i}+\sum_{j \in B} v_{j}$

$$
\begin{aligned}
& \text { New -OLD }=\delta(\mid A \cap L)-(B \cap L)) \\
& =\delta(\underbrace{|A \cap L+|A-L|}_{|A|}-\underbrace{(A-L|-|B \cap L|}_{\left|C^{*}\right|}) \\
& =\delta(\underbrace{\left.\frac{n}{2}-\left|C^{*}\right|\right) \geqslant \delta}
\end{aligned}
$$

Thus, dual value increases! Repeat until terminationthen M is perfect; done.

Proves Theorem: for any extreme $p^{+} x^{*}$, can choose c to make x^{*} unique optimum.
$Z_{I P}=Z_{L P} \Leftrightarrow P$ has integral extreme pts.
for all c

Termination? how do we know it terminates?
Recall def of L.
M

everything reachable from exposed in A.

Claim: New vertex $j_{\in B}$ reachable.
for some $i \in A \cap L, j \in B-L$, $w_{i j}=0$ by an choice of δ.

$$
E=\left\{(i, j): w_{i j}=0\right\}
$$

thus, in $\leq \frac{n}{2}$ iterations either

Analysis:
"outer loop": matching M.
if M not perfect, is exposed vertex in B

- "Inner loop:"
each time u, v change,
$\geqslant 1$ edge added to E \&
≥ 1 new vertex of B reachable. Thus need to
change dual $\subseteq \frac{n}{2}$ times we fore exposed vertex reached. Once this happens, canincrease |M|.
find new larger M; either M perfect (done) or re-enter inner loop.
outer loop can happen $\leq \frac{n}{2}$ times inner loop happens $\leq \frac{n}{2}$ time per outer loop
$\frac{n}{2} \cdot \frac{n}{2}=0\left(n^{2}\right)$ iterations
Total running time
$O\left(n^{4}\right)$
ole takes $O\left(n^{2}\right)$ time to compute L.
Exercise: By tracking more careful how L changes, show $O\left(v^{3}\right)$.

Remark: strongly polynomial time: poly in n, assuming arith, operations free."

* and that space to run algorithm is poly in \# input bits.

